
An Entropy-based Adaptive Genetic Algorithm
Approach on Data Mining for Classification

Problems

Dipayan Kumar Ghosh
Assistant Professor in Computer Science & Engineering (CSE) Depratment

Calcutta Institute of Technology(CIT)
Uluberia , Howrah – 711316 , West Bengal , India .

Namita Ghosh

MCA, Haldia Institute of Technology(HIT)
 Midnapore , West Bengal , India .

Abstract- Genetic algorithm is one of the commonly used
approaches on data mining. In this paper, we put forward a
genetic algorithm approach for classification problems. Binary
coding is adopted in which an individual in a population
consists of a fixed number of rules that stand for a solution
candidate. The evaluation function considers four important
factors which are error rate, entropy measure, rule consistency
and hole ratio, respectively. Adaptive asymmetric mutation is
applied by the self-adaptation of mutation inversion probability
from 1-0 (0-1). The generated rules are not disjoint but can
overlap. The final conclusion for prediction is based on the
voting of rules and the classifier gives all rules equal weight for
their votes. Based on three databases, we compared our
approach with several other traditional data mining techniques
including decision trees, neural networks and naive bayes
learning. The results show that our approach outperformed
others on both the prediction accuracy and the standard
deviation.
Keywords: genetic algorithm, adaptive asymmetric mutation,
entropy, voting-based classifier

1. INTRODUCTION

Genetic algorithms have been successfully applied to a wide
range of optimization problems including design, scheduling,
routing, and control, etc. Data mining is also one of the
important application fields of genetic algorithms. In data
mining, GA can be used to either optimize parameters for
other kinds of data mining algorithms or discover knowledge
by itself. In this latter task the rules that GA found are
usually more general because of its global search nature. In
contrast, most other data mining methods are based on the
rule induction paradigm, where the algorithm usually
performs a kind of local search. The advantage of GA
becomes more obvious when the search space of a task is
large.
 In this paper we put forward a genetic algorithm approach
for classification problems. First we use binary coding in
which an individual solution candidate consists of a fixed
number of rules. In each rule, k bits are used for the possible

k values of a certain attribute. Continuous attributes are
modified to threshold-based boolean attributes before coding.
Rule consequent is not explicitly coded in the string, instead,
the consequent of a rule is determined by the majority of
training examples it matches.
 Four important factors are considered in our evaluation
functions. Error rate is calculated by the predicting results on
the training examples. Entropy is used to measure the
homogeneity of the examples that a certain rule matches.
Rule consistency is a measure on the consistency of
classification conclusions of a certain training example given
by a set of rules. Finally, hole ratio is used to evaluate the
percentage of training examples that a set of rules does not
cover. We try to include related information as complete as
possible in the evaluation function so that the overall
performance of a rule set can be better.
 An adaptive asymmetric mutation operator is applied in
our reproduction step. When a bit is selected to mutate, the
inversion probability from 1-0 (0-1) is not 50% as usual. The
value of this probability is asymmetric and self-adaptive
during the running of the program. This is made to reach the
best match of a certain rule to training examples. For
crossover, two-point crossover is adopted in our approach.
 We used three real databases to test our approach: credit
database, voting database and heart database. We compared
our performance with four well-known methods from data
mining, namely Induction Decision Trees (ID3) (Quinlan,
1986), ID3 with Boosting (Quinlan, 1996), Neural Networks,
and Naive Bayes (Mitchell, 1997). The appropriate state-of-
the-art techniques are incorporated in these non-GA methods
to improve their performances. The results show that our GA
approach outperformed other approaches on both the
prediction accuracy and the standard deviation.
 In the rest of the paper, we will first give a brief overview
of related work. Our GA approach is then discussed in detail.
The results of our application on three real databases and the
comparison with other data mining methods are followed.
Finally we make some concluding remarks.

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3203

2. RELATED WORKS

Many researchers have contributed to the application of GA
on data mining. In this section, we will give a brief overview
on a few representative works.
 In early 90’s, De Jong et al. implemented a GA-based
system called GABIL that continually learns and refines
concept classification rules (De Jong, 1993). An individual is
a variable-length string representing a set of fixed-length
rules. Traditional bit inversion is used on mutation. In
crossover, corresponding crossover points in the two parents
must semantically match. The fitness function contains only
the percent of correct examples classified by an individual
rule set. They compared the performance of GABIL with that
of four other traditional concept learners on a variety of
target concepts.
 In GIL (Janikow, 1993), an individual is also a set of rules,
but attributes values are encoded directly, rather than bits.
GIL has special genetic operators for handling rule sets,
rules, and rule conditions. The operators can perform
generalization, specialization or other operations. Besides the
correctness, the evaluation function of GIL also includes the
complexity of a rule set. Therefore it favors correct, simple
(short) rules.
 Greene and Smith put forward a GA-based inductive
system called COGIN (Greene, 1993). In contrast to the
above two approaches, the system’s current model at any
point during the search is represented as a population of fixed
length rules. The population size (i.e., the number of rules in
the model) will vary from cycle to cycle as a function of the
coverage constraint is applied. The fitness function contains
the information gain of a rule R and a penalty of the number
of misclassifications made by R. Entropy measure is used to
calculate the information gain of rule R based on the number
of examples rule R Matched and Unmatched. However, it
couldn’t evaluate the entropy measure of the entire partition
formed by the classification due to its encoding method.
 In view of the situation that most of the data mining work
emphasizes only on the predictive accuracy and
comprehensibility, Noda et al. (Noda, 1999) put forward a
GA approach designed to discover the interesting rules. The
fitness function consists of two parts. The first one measures
the degree of interestingness of the rule, while the second
measures its predictive accuracy. The computation of the
consequent’s degree of interestingness is based on the
following idea: the larger the relative frequency (in the
training set) of the value being predicted by the consequent,
the less interesting it is. In other words, the rarer a value of a
goal attribute, the more interesting a rule predicting it is.
Since the values of the goal attribute in the databases we
tested are not unevenly distributed seriously, we didn’t
specially consider interestingness of a rule in our current
implementation but mainly focus on including related factors
as complete as possible to improve the predicting accuracy.
However, we did consider how to treat uneven distribution of

goal attribute values somehow. We will discuss this in details
in the next section.

3. OUR GA APPROACH

In this section we present our GA approach for classification
problem. The key idea of the algorithm is general and should
be applicable for various kinds of classification problems.
Some parameter values used in the algorithm might be task
dependent.

3.1 Individual’s encoding
Each individual in the population consists of a fixed number
of rules. In other words, the individual itself is a complete
solution candidate. In our current implementation, we set this
fixed number as 10 which well satisfies the requirement of
our testing databases. The antecedent of a certain rule in the
individual is formed by a conjunction of n attributes, where n
is number of attributes being mined. K bits will be used to
stand for an attribute if this attribute has k possible values.
Continuous attributes will be partitioned to threshold-based
boolean attribute in which the threshold is a boundary
(adjacent examples across this boundary differ in their target
classification) that maximizes the information gain.
Therefore two bits will be used for a continuous attribute.
The consequent of a rule is not explicitly encoded in the
string. In contrast, it is automatically given based on the
proportion of positive/negative examples it matches in the
training set. We will illustrate the encoding method by the
following example.
 Suppose our task has three attributes, and they have 4, 2, 5
possible values respectively. Then an individual in the
population can be represented as following:
 A1 A2 A3 A1 A2 A3 A1 A2 A3
0110 11 10110 1110 01 10011 …… 1100 11 01110
 Rule 1 Rule 2 …… Rule 10
 Ten rules are included in this individual. The architecture
of each rule is same. We will use rule 1 to explain the
meaning of encoding. In this example, the meaning of the
antecedent of rule 1 is:
If (A1=value 2 OR value 3) AND (A2=value 1 OR value 2)
AND (A3=value 1 OR value 3 OR value 4)
 If all the bits belong to one attribute are 0s, it means that
attribute can not equal to any possible value therefore this is
meaningless. To avoid this, we add one step before the
evaluation of the population. We will check each rule in each
individual one by one, if the above case happens, we will
randomly select one bit of that attribute and change it to one.
 The consequent of a rule is not encoded in the string. It
will be determined by the proportion situation of the training
examples that rule matches. Suppose i is one of the
classifications, the consequent of a rule will be i if

training

itraining

matched

imatched

N

N

N

N __  , (1)

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3204

where imatchedN _ is the number of examples whose

classification is i and matched by that rule, matchedN is the

total number of examples that the rule matches; itrainingN _ is

the number of training examples whose classification is i,

trainingN is the total number of training examples.

 For example, if the distribution of the positive examples
and negative examples in the training set is 42% and 58%,
and among the examples of rule 1 matches positive / negative
examples are half to half, then the consequent of rule 1
should be positive because 0.5 > 0.42. Since the testing
databases we use at this time don’t have a very uneven
distribution on the classification of training examples, in our
current implementation we didn’t specially consider the
interestingness of rules but use this strategy to keep enough
rules to match examples with minor classification. Our
encoding method is not limited to two-category classification
but applicable to multi target value problems.

3.2 Fitness function
It is very important to define a good fitness function that
rewards the right kinds of individuals. We try to consider
affecting factors as complete as possible to improve the
results of classification. Our fitness function is defined as
following:
Fitness = Error rate + Entropy measure + Rule consistency +
Hole ratio (2)
 We will elaborate each part in the fitness function in the
following.
1) Error rate
It is well known that accuracy is the most important and
commonly used measure in the fitness function as the final
goal of data mining is to get good prediction results. Since
our objective function here is minimization, we use error rate
to represent this information. It is calculated as:
Error rate = percent of misclassified examples (3)
 If a rule matches a certain example, the classification it
gives is its consequent part. If it doesn’t match, no
classification is given. An individual consists of a set of
rules, the final classification predicted by this rule set is
based on the voting of those rules that match the example.
The classifier gives all matching rules equal weight. For
instance, in an individual (which has ten rules here), one rule
doesn’t match, six rules give positive classification and three
rules give negative classification on a training example, then
the final conclusion given by this individual on that training
example is positive. If a tie happens (i.e., four positive
classifications and four negative classifications), the final
conclusion will be the majority classification in the training
examples. If none of the rules in the individual matches that
example, the final conclusion will also be the majority
classification in the training examples. The error rate
measure of this individual is the percent of misclassified
examples among all training examples.

2) Entropy measure
Entropy is a commonly used measure in information theory.
Originally it is used to characterize the (im)purity of an
arbitrary collection of examples. In our implementation
entropy is used to measure the homogeneity of the examples
that a rule matches.
 Given a collection S, containing the examples that a
certain rule R matches, let Pi be the proportion of examples
in S belonging to class i, then the entropy Entropy(R) related
to this rule is defined as:

 



n

i

ii ppREntropy
1

2))(log()((4)

where n is the number of target classifications.
 While an individual consists of a number of rules, the
entropy measure of an individual is calculated by averaging
the entropy of each rule:

R

N

i

i

N

REntropy

individualEntropy

R


 1

)(

)((5)

where NR is number of rules in the individual (in our current
implementation it is 10).
 The rationale of using entropy measure in fitness function
is to prefer those rules that match less examples whose target
values are different from rule’s consequent. High accuracy
does not implicitly guarantee the entropy measure is good
because the final classification conclusion of a certain
training example is based on the comprehensive results of a
number of rules. It is very possible that each rule in the
individual has a bad entropy measure but the whole rule set
still gives the correct classification. Keeping low entropy
value of an individual will be helpful to get better predicting
results for untrained examples.
3) Rule consistency
As stated in the above sections, the final predicted
classification of a training example is the majority
classification made by rules in an individual. Let’s consider
the following classifications made by two individuals on an
example:
Individual a: six rules  +, four rules  -, final
classification: +
Individual b: nine rules  +, one rule  -, final
classification: +
 We will prefer the second individual since it is less
ambiguous. To address this rule consistency issue, we add
another measure in the fitness function. The calculation is
similar to the entropy measure. Let Pcorrect be the proportion
of rules in one individual whose consequent is same with the
target value of the training example, then

)1(log)1(

log)(

2

2

correctcorrect

correctcorrectyconsistenc

pp

ppindividualRule




 (6)

 We should notice that this formula will give the same rule
consistency value when pcorrect and (1-pcorrect) switch each

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3205

other. Therefore a penalty will be given when pcorrect is
smaller than 0.5. In this case Ruleconsistency = 2 - Ruleconsistency.
The above calculation is based on the predicting results for
one training example. The complete measure of rule
consistency of an individual should be averaged by the
number of training examples.
4) Hole ratio:
The last element in the fitness function is the hole ratio. It is
a measure of rule’s coverage on training examples. Coverage
is not a problem for traditional inductive learning methods
like decision trees, since the process of creating trees
guarantees that all the training examples will be covered in
the tree. However, this also brings a new problem that it may
be sensitive to noise. GA approach does not guarantee that
the generated rules will cover all the training examples. This
allows flexibility and may be potentially useful for future
prediction. In real implementation we still hope the coverage
should reach a certain point. For instance, if a rule only
matches one training example and its consequent is correct,
the accuracy and entropy measure of this rule are both
excellent but we do not prefer this rule because its coverage
is too low.
 In our fitness function the hole ratio equals to 1-coverage,
in which the latter is calculated by the union of examples that
are matched and also correctly predicted by the rules in an
individual. Totally misclassified examples (not classified
correctly by any rule in the individual) will not be included
even though they are matched by some rules. The following
is the formula to calculate the hole ratio for binary
classification problem (positive, negative).

S

NP

Hole i

i

i

i   

1 (7)

where 
iP stands for those examples whose target value is

positive and classified as positive by at least one rule in the

individual, 
iN stands for those examples whose target value

is negative and classified as negative by at least one rule in
the individual. S is the total number of training examples.

3.3 Adaptive asymmetric mutation
In our reproduction step, traditional bit inversion is used on
mutation. However, we found many examples will not be
matched if we keep number of 1’s and 0’s approximately
equivalent in an individual (i.e., the inversion probability
from 1-0 and 0-1 are both 50%). The learning process will
become a majority guess if there are too many unmatched
examples. Therefore, we put forward a strategy of adaptive
asymmetric mutation in which the inversion probability from
1-0 (0-1) is self-adaptive during the process of run. The
asymmetric mutation biases the population toward
generating rules with more coverage on training examples.
The self-adaptation of inversion probability makes the
optimal mutation parameter be automatically adjusted.

 We presented an adaptive simplex genetic algorithm
before (Yang, 2000) in which the percentage of simplex
operator is self-adaptive during the process of run. Similar
idea is adopted here that average of fitness is used as a
feedback to adjust the inversion probability. The process of
self-adaptation is described as following:
 1) An initial inversion probability is set (e.g., 0.5 for 1-0).
Use this probability on mutation to produce a new
generation. Calculate the average fitness of this generation.
 2) Randomly select the direction of changing this
probability (increase, decrease). Modify the probability along
that direction with a small amount (0.02 in our current
implementation). Use the new probability to produce the next
generation and calculate the average fitness of the new
generation.
 3) If the fitness is better (value is smaller), continue on this
direction and the amount of change is:
p = max{0.05, (1- fitnessnew / fitnessold) * 0.1} (8)
 If the fitness is worse (value is larger), reverse the
direction and the amount of change is:
p = max{0.05, (fitnessnew / fitnessold - 1) * 0.05} (9)
 Use the new probability to produce the next generation
and calculate the average fitness of the new generation.
 Repeat step 3 until the program ends.

4. RESULTS AND DISCUSSIONS

We tested our approach on three real databases. We
compared our approach with four other traditional data
mining techniques. This section will present the testing
results.

4.1 The information of databases
1) Credit database
This database concerns credit card applications. All attribute
names and values have been changed to meaningless
symbols to protect confidentiality of the data. This database
is interesting because there is a good mix of attributes ----
continuous, nominal with small numbers of values, and
nominal with larger numbers of values. There are 15
attributes plus one target attribute. Total number of instances
is 690.
2) Voting database
This database saves 1984 United States Congressional
Voting Records. The data set includes votes for each of the
U.S. House of Representatives Congressmen on the 16 key
votes identified by the CQA. The CQA lists nine different
types of votes: voted for, paired for, and announced for
(these three simplified to yea), voted against, paired against,
and announced against (these three simplified to nay), voted
present, voted present to avoid conflict of interest, and did
not vote or otherwise make a position known (these three
simplified to an unknown disposition). There are 16
attributes plus one target attribute. Total number of instances
is 435 (267 democrats, 168 republicans).
3) Heart database

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3206

This database concerns heart disease diagnosis. The data was
provided by V.A. Medical Center, Long Beach and
Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D.
There are 14 attributes plus one target attribute. Total number
of instances is 303.

4.2 The description of non-GA approaches
We used four well-known methods from machine learning,
namely Induction Decision Trees (ID3) (Quinlan, 1986),
Decision Trees with Boosting (Quinlan, 1996), Neural
Networks, and Naïve Bayes (Mitchell, 1997), to compare the
performance of our improved GA. Appropriate state-of-the-
art techniques have been incorporated in most of the non-GA
methods to improve their performance. The following is a
description of the non-GA approaches we used for the
performance comparison studies.
1) Induction Decision Trees
The construction of a decision tree is divided into two stages.
First, creating an initial, large decision tree using a set of
training set. Second, pruning the initial decision tree, if
applicable, using a validation set. Given a noise-free training
set, the first stage will generate a decision tree that can
classify correctly all examples in the set. Except that the
training set covers all instances in the domain, the initial
decision tree generated will over fit the training data, which
then reduce its performance in the test data. The second stage
helps alleviate this problem by reducing the size of the tree.
This process has an effect in generalizing the decision tree
that hopefully could improve its performance in the test data.
 During the construction of an initial decision tree, the
selection of the best attribute is based on either the
information gain (IG) or gain ratio (GR). A binary split is
applied in nodes with continuous-valued attributes. The best
cut-off value of a continuous-valued attribute is locally
selected within each node in the tree based on the remaining
training examples. The tree’s node expansion stops either
when the remaining training set is homogeneous (e.g., all
instances have the same target attribute values) or when no
attribute remains for selection. The decision on a leaf
resulting from the latter case is determined by selecting the
majority of the target attribute value in the remaining training
set.
 Decision tree pruning is a process of replacing sub-trees
with leaves to reduce the size of the decision tree while
retaining and hopefully increasing the accuracy of tree's
classification. To obtain the best result from the induction
decision tree method, we varied the use of pruning algorithm
to the initial decision tree. We considered using the
following decision trees pruning algorithms: critical-value
pruning (Mingers, 1987), minimum-error pruning (Niblett &
Bratko, 1986), pessimistic pruning, cost-complexity pruning
and reduced-error pruning (Quinlan, 1987),.
2) Induction Decision Trees with Boosting
Decision Tree with Boosting is a method that generates a
sequence of decision trees from a single training set by re-
weighting and re-sampling the samples in the set (Quinlan,

1996; Freund & Schapire, 1996). Initially, all samples in the
training set are equally weighted so that their sum is one.
Once a decision tree has been created, the samples in the
training set are re-weighted in such a way that misclassified
examples will get higher weights than the ones that are easier
to classify. The new samples weights are then renormalized,
and next decision tree is created using higher-weighted
samples in the training set. In effect, this process enforces the
more difficult samples to be learned more frequently by
decision trees. The trees generated are then given weights in
accordance with their performance in the training examples
(e.g., their accuracy in correctly classifying the training data).
Given a new instance, the new instance class is selected from
the maximum weighted average of the predicted class over
all decision trees.
3) Neural Networks
Inspired in part by biological learning systems, neural
networks approach is built from a densely interconnected set
of simple units. Since this technique offers many design
selections, we fixed some of them to the ones that had been
well proven to be good or acceptable design choices. In
particular, we use a network architecture with one hidden
layer, the back-propagation learning algorithm (Rumelhart,
Hinton & William, 1986), the delta-bar-delta adaptive
learning rates (Jacobs, 1988), and the Nguyen-Widrow
weight initialization (Nguyen & Widrow, 1990). Discrete-
valued attributes fed into the networks input layer is
represented as 1-of-N encoding using bipolar values to
denote the presence (e.g., value 1) and the absence (e.g.,
value –1) of an attribute value. Continuous-valued attribute is
scaled into a real value in the range [–1, 1]. We varied the
design choices for batch versus incremental learning, and 1-
of-N versus single network output encoding.
4) Naive Bayes
Naive Bayes classifier is a variant of the Bayesian learning
that manipulates directly probabilities from observed data
and uses these probabilities to make an optimal decision.
This approach assumes that attributes are conditionally
independent given a class. Based on this simplifying
assumption, the probability of observing attributes’
conjunction is the product of the probabilities for the
individual attributes. Given an instance with a set of
attribute-value pairs, the Naive Bayes approach will choose a
class that maximizes the conditional probability of the class
given the conjunction of attributes values. Although in
practice the independence assumption is not entirely correct,
it does not necessarily degrade the system performance
(Domingos & Pazzani, 1997).
 We also assume that the values of continuous-valued
attributes follow Gaussian distribution. Hence, once the
mean and the standard deviation of these attributes are
obtained from the training examples, the probability of the
corresponding attributes can be calculated from the given
attribute values. To avoid zero frequency count problem that
can dampen the entire probabilities calculation, we use an m-

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3207

estimate approach in calculating probabilities of discrete-
valued attributes (Mitchell, 1997).

4.3 Comparison results
For each database, k-fold cross-validation method is used for
evaluation. In this method, a data set is divided equally into k
disjoint subsets. k experiments are then performed using k
different training-test set pairs. A training-test set pair used in
each experiment is generated by using one of the k subsets as
the test set, and using the remaining subsets as the training
set. Given k disjoint subsets, for example, the first
experiment takes the first subset for the test set, and uses the
second subset through the kth subset for the training set. The
second experiment uses subset 1 and subset 3 through subset
k for the training set; and takes subset 2 for the test set, and
so on. All results from a particular database are averaged
along with its variance over k experiment runs.
 Based on their size, the credit database and voting
database are partitioned into 10 disjoint subsets, the heart
database is partitioned into 5 subsets. Table 1, 2, 3 show the
performance comparison results of different approaches on
these three databases. For decision trees with and without

boosting, we present only the best experimental results after
varying the data splitting methods as well as the pruning
algorithms described earlier. Similarly, results from neural
networks approach are selected from the ones that provide
the best performance after varying the use of different
network output encoding and batch versus incremental
learning methods.
 In Table 1, the decision tree is generated using information
gain for data splitting and minimum-error pruning. Decision
trees with boosting generates 21 different decision trees, each
is constructed by using gain ratio for data splitting and cost-
complexity pruning algorithm. Batch learning and 1-of-N
output encoding are used in neural networks.
 In table 2, the best results from both decision trees with
and without boosting are obtained from using information
gain for data splitting and reduced-error pruning algorithm.
Only three decision trees are needed in the decision trees
with boosting.

Table 1 The comparison results on the prediction accuracy and standard deviation (%) of credit database.

Our GA
approach

Decision trees
(IG, Min-Err)

Decision trees with
boosting

(RG, Cost-Com, 21
trees)

Neural networks (1-of-
N, batch learning)

Naive Bayes

Run 1 90.77 87.69 89.23 89.23 66.15
Run 2 89.23 84.62 86.15 86.15 78.46
Run 3 89.23 89.23 90.77 90.77 84.62
Run 4 92.31 90.77 90.77 89.23 81.54
Run 5 86.15 81.54 81.54 84.62 75.38
Run 6 89.23 87.69 87.69 87.69 80.00
Run 7 84.62 81.54 84.62 84.62 73.85
Run 8 87.69 86.15 87.69 86.15 83.08
Run 9 90.77 86.15 89.23 87.69 76.92
Run 10 86.76 88.24 91.18 86.76 75.00
Average 88.68 86.36 87.89 87.29 77.50

Standard deviation 2.37 3.06 3.08 2.03 5.36

Table 2 The comparison results on the prediction accuracy and standard deviation (%) of voting database.

Our GA
approach

Decision trees
(IG, Red-Err)

Decision trees with
boosting (IG, Red-

Err,3 trees)

Neural networks (1-
of-N, batch learning)

Naive Bayes

Run 1 95.35 95.35 95.35 93.02 93.02
Run 2 97.67 93.02 97.67 97.67 90.70
Run 3 97.67 97.67 97.67 97.67 93.02
Run 4 95.35 95.35 97.67 97.67 88.37
Run 5 95.35 95.35 95.35 93.02 88.37
Run 6 97.67 97.67 97.67 97.67 88.37
Run 7 95.35 93.02 93.02 95.35 93.02
Run 8 97.67 95.35 95.35 95.35 90.70
Run 9 100.00 100.00 97.67 95.35 90.70
Run 10 95.83 93.75 97.92 95.03 85.42
Average 96.79 95.65 96.54 95.86 90.17

Standard deviation 1.59 2.23 1.67 1.46 2.53

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3208

Table 3 The comparison results on the prediction accuracy and standard deviation (%) of heart database.

Our GA
approach

Decision trees
(IG, Red-Err)

Decision trees with
boosting

(IG, Red-Err,
21 trees)

Neural networks
(1-of-N, incr

learning)
Naive Bayes

Run 1 89.83 81.36 88.14 81.36 89.83
Run 2 83.05 77.97 84.75 84.75 79.66
Run 3 81.36 76.27 76.27 74.58 83.05
Run 4 88.14 76.27 83.05 89.83 83.05
Run 5 83.33 66.67 71.67 81.67 80.00

Average 85.14 75.71 80.77 82.44 83.12
Standard deviation 3.64 5.46 5.54 5.66 4.08

 In table 3, the best results from neural networks are
obtained from applying incremental learning and 1-of-N
network output encoding.
 From the above results we can see that our GA approach
outperformed other approaches on both the average
prediction accuracy and the standard deviation. The
advantage of our GA approach becomes more obvious on
heart database, which is most difficult to learn among the
three. During the process of running, we also found that the
training accuracy and testing accuracy of GA approach are
basically in the same level, while the training accuracy is
often much higher than testing accuracy for other
approaches. This proves that GA approach is less sensitive to
noise and might be more effective for future prediction.

5. CONCLUSIONS AND FUTURE WORK

In this paper we put forward a genetic algorithm approach for
classification problem. An individual in a population is a
complete solution candidate that consists of a fixed number
of rules. Rule consequent is not explicitly encoded in the
string but determined by the match situation on training
examples of the rule. To consider the performance affecting
factors as complete as possible, four elements are included in
the fitness function which are predicting error rate, entropy
measure, rule consistency and hole ratio, respectively.
Adaptive asymmetric mutation and two-point crossover are
adopted in reproduction step. The inversion probability of 1-
0 (0-1) in mutation is self-adaptive by the feedback of
average fitness during the run. The generated classifier after
evolution is voting-based. Rules are not disjoint but allowed
to overlap. Classifier gives all rules the equal weight for their
votes. We tested our algorithm on three real databases and
compared the results with four other traditional data mining
approaches. It is shown that our approach outperformed other
approaches on both prediction accuracy and the standard
deviation.

 Further testing on various databases is in progress to test
the robustness of our algorithm. Splitting continuous
attribute into multiple intervals rather than just two intervals
based on a single threshold is also considered to improve the
performance.

REFERENCES

De Jong, K. A., Spears, W. M., and Gordon, D. F. (1993) Using genetic
algorithms for concept learning. Machine Learning, 13, 161-188.

Domingos, P. and Pazzani, M. (1997) On the Optimality of the Simple
Bayesian Classifier under Zero-One Loss. Machine Learning, 29, 103-
130.

Freund, Yoav, and Schapire, R. E. (1996) Experiments with a new boosting
algorithm. In Machine Learning: Proceedings of the Thirteen
International Conference, pp. 148-156.

Greene, D., P. and Smith, S. F. (1993) Competition-based induction of
decision models from examples. Machine Learning, 13, 229-257.

Jacobs, R.A. (1988) Increased Rates of Convergence Through Learning Rate
Adaptation. Neural Networks, 1(4): 295-307.

Janikow, C. Z. (1993) A knowledge-intensive genetic algorithm for
supervised learning. Machine Learning, 13, 189-228.

Mingers, J. (1987) Expert Systems – Rule Induction with Statistical Data.
Journal of the Operational Research Society, 38, 39-47.

Mitchell, Tom. (1997) Machine Learning. New York: McGraw-Hill.
Niblett, T. (1986) Constructing Decision Trees in Noisy Domains. In I.

Bratko and N. Lavrac (Eds). Progress in Machine Learning. England:
Sigma Press.

Noda, E., Freitas, A. A. and Lopes, H. S. (1999) Discovering interesting
prediction rules with a genetic algorithm. In Proceedings of 1999
Congress on Evolutionary Computation (CEC’ 99), pp. 1322-1329.

Nguyen, D. and Widrow, B. (1990) Improving the Learning Speed of Two-
Layer Networks by Choosing Initial Values of the Adaptive Weights.
International Joint Conference on Neural Networks, San Diego, CA,
III:21-26.

Quinlan, J.R. (1986) Induction of Decision Trees. Machine Learning, 1, 81-
106.

Quinlan, J.R. (1987) Simplifying Decision Trees. International Journal of
Man-Machine Studies, 27, 221-234.

Quinlan, J. R. (1996) Bagging, Boosting, and C4.5. In Proceedings of the
Thirteenth National Conference on Artificial Intelligence, pp. 725-730.

Rumelhart, D. E., Hinton, G.E., and William, R. J. (1986) Learning
Representations by Back-Propagation Error. Nature, 323:533-536.

Yang, L. and Yen, J. (2000) An adaptive simplex genetic algorithm. In
Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2000), July 2000, pp. 379.

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209

3209

