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Abstract- Genetic algorithm is one of the commonly used 
approaches on data mining. In this paper, we put forward a 
genetic algorithm approach for classification problems. Binary 
coding is adopted in which an individual in a population 
consists of a fixed number of rules that stand for a solution 
candidate. The evaluation function considers four important 
factors which are error rate, entropy measure, rule consistency 
and hole ratio, respectively. Adaptive asymmetric mutation is 
applied by the self-adaptation of mutation inversion probability 
from 1-0 (0-1). The generated rules are not disjoint but can 
overlap. The final conclusion for prediction is based on the 
voting of rules and the classifier gives all rules equal weight for 
their votes. Based on three databases, we compared our 
approach with several other traditional data mining techniques 
including decision trees, neural networks and naive bayes 
learning. The results show that our approach outperformed 
others on both the prediction accuracy and the standard 
deviation. 
Keywords: genetic algorithm, adaptive asymmetric mutation, 
entropy, voting-based classifier 

1. INTRODUCTION 

Genetic algorithms have been successfully applied to a wide 
range of optimization problems including design, scheduling, 
routing, and control, etc. Data mining is also one of the 
important application fields of genetic algorithms. In data 
mining, GA can be used to either optimize parameters for 
other kinds of data mining algorithms or discover knowledge 
by itself. In this latter task the rules that GA found are 
usually more general because of its global search nature. In 
contrast, most other data mining methods are based on the 
rule induction paradigm, where the algorithm usually 
performs a kind of local search. The advantage of GA 
becomes more obvious when the search space of a task is 
large. 
    In this paper we put forward a genetic algorithm approach 
for classification problems. First we use binary coding in 
which an individual solution candidate consists of a fixed 
number of rules. In each rule, k bits are used for the possible 

k values of a certain attribute. Continuous attributes are 
modified to threshold-based boolean attributes before coding. 
Rule consequent is not explicitly coded in the string, instead, 
the consequent of a rule is determined by the majority of 
training examples it matches. 
    Four important factors are considered in our evaluation 
functions. Error rate is calculated by the predicting results on 
the training examples. Entropy is used to measure the 
homogeneity of the examples that a certain rule matches. 
Rule consistency is a measure on the consistency of 
classification conclusions of a certain training example given 
by a set of rules. Finally, hole ratio is used to evaluate the 
percentage of training examples that a set of rules does not 
cover. We try to include related information as complete as 
possible in the evaluation function so that the overall 
performance of a rule set can be better. 
    An adaptive asymmetric mutation operator is applied in 
our reproduction step. When a bit is selected to mutate, the 
inversion probability from 1-0 (0-1) is not 50% as usual. The 
value of this probability is asymmetric and self-adaptive 
during the running of the program.  This is made to reach the 
best match of a certain rule to training examples. For 
crossover, two-point crossover is adopted in our approach. 
    We used three real databases to test our approach: credit 
database, voting database and heart database. We compared 
our performance with four well-known methods from data 
mining, namely Induction Decision Trees (ID3) (Quinlan, 
1986), ID3 with Boosting (Quinlan, 1996), Neural Networks, 
and Naive Bayes (Mitchell, 1997). The appropriate state-of-
the-art techniques are incorporated in these non-GA methods 
to improve their performances. The results show that our GA 
approach outperformed other approaches on both the 
prediction accuracy and the standard deviation. 
    In the rest of the paper, we will first give a brief overview 
of related work. Our GA approach is then discussed in detail. 
The results of our application on three real databases and the 
comparison with other data mining methods are followed. 
Finally we make some concluding remarks. 
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2. RELATED WORKS 

Many researchers have contributed to the application of GA 
on data mining. In this section, we will give a brief overview 
on a few representative works. 
    In early 90’s, De Jong et al. implemented a GA-based 
system called GABIL that continually learns and refines 
concept classification rules (De Jong, 1993). An individual is 
a variable-length string representing a set of fixed-length 
rules. Traditional bit inversion is used on mutation. In 
crossover, corresponding crossover points in the two parents 
must semantically match. The fitness function contains only 
the percent of correct examples classified by an individual 
rule set. They compared the performance of GABIL with that 
of four other traditional concept learners on a variety of 
target concepts. 
    In GIL (Janikow, 1993), an individual is also a set of rules, 
but attributes values are encoded directly, rather than bits. 
GIL has special genetic operators for handling rule sets, 
rules, and rule conditions. The operators can perform 
generalization, specialization or other operations. Besides the 
correctness, the evaluation function of GIL also includes the 
complexity of a rule set. Therefore it favors correct, simple 
(short) rules. 
    Greene and Smith put forward a GA-based inductive 
system called COGIN (Greene, 1993). In contrast to the 
above two approaches, the system’s current model at any 
point during the search is represented as a population of fixed 
length rules. The population size (i.e., the number of rules in 
the model) will vary from cycle to cycle as a function of the 
coverage constraint is applied. The fitness function contains 
the information gain of a rule R and a penalty of the number 
of misclassifications made by R. Entropy measure is used to 
calculate the information gain of rule R based on the number 
of examples rule R Matched and Unmatched. However, it 
couldn’t evaluate the entropy measure of the entire partition 
formed by the classification due to its encoding method. 
    In view of the situation that most of the data mining work 
emphasizes only on the predictive accuracy and 
comprehensibility, Noda et al. (Noda, 1999) put forward a 
GA approach designed to discover the interesting rules. The 
fitness function consists of two parts. The first one measures 
the degree of interestingness of the rule, while the second 
measures its predictive accuracy. The computation of the 
consequent’s degree of interestingness is based on the 
following idea: the larger the relative frequency (in the 
training set) of the value being predicted by the consequent, 
the less interesting it is. In other words, the rarer a value of a 
goal attribute, the more interesting a rule predicting it is. 
Since the values of the goal attribute in the databases we 
tested are not unevenly distributed seriously, we didn’t 
specially consider interestingness of a rule in our current 
implementation but mainly focus on including related factors 
as complete as possible to improve the predicting accuracy. 
However, we did consider how to treat uneven distribution of 

goal attribute values somehow. We will discuss this in details 
in the next section. 

3. OUR GA APPROACH 

In this section we present our GA approach for classification 
problem. The key idea of the algorithm is general and should 
be applicable for various kinds of classification problems. 
Some parameter values used in the algorithm might be task 
dependent. 

3.1 Individual’s encoding 
Each individual in the population consists of a fixed number 
of rules. In other words, the individual itself is a complete 
solution candidate. In our current implementation, we set this 
fixed number as 10 which well satisfies the requirement of 
our testing databases. The antecedent of a certain rule in the 
individual is formed by a conjunction of n attributes, where n 
is number of attributes being mined. K bits will be used to 
stand for an attribute if this attribute has k possible values. 
Continuous attributes will be partitioned to threshold-based 
boolean attribute in which the threshold is a boundary 
(adjacent examples across this boundary differ in their target 
classification) that maximizes the information gain. 
Therefore two bits will be used for a continuous attribute. 
The consequent of a rule is not explicitly encoded in the 
string. In contrast, it is automatically given based on the 
proportion of positive/negative examples it matches in the 
training set. We will illustrate the encoding method by the 
following example. 
    Suppose our task has three attributes, and they have 4, 2, 5 
possible values respectively. Then an individual in the 
population can be represented as following: 
 A1   A2    A3        A1   A2   A3                     A1    A2    A3 
0110  11 10110    1110  01  10011    ……    1100  11  01110 
       Rule  1                  Rule  2           ……          Rule  10 
    Ten rules are included in this individual. The architecture 
of each rule is same. We will use rule 1 to explain the 
meaning of encoding. In this example, the meaning of the 
antecedent of rule 1 is: 
If (A1=value 2 OR value 3) AND (A2=value 1 OR value 2) 
AND (A3=value 1 OR value 3 OR value 4) 
    If all the bits belong to one attribute are 0s, it means that 
attribute can not equal to any possible value therefore this is 
meaningless. To avoid this, we add one step before the 
evaluation of the population. We will check each rule in each 
individual one by one, if the above case happens, we will 
randomly select one bit of that attribute and change it to one. 
    The consequent of a rule is not encoded in the string. It 
will be determined by the proportion situation of the training 
examples that rule matches. Suppose i is one of the 
classifications, the consequent of a rule will be i if 

training

itraining

matched

imatched

N

N

N

N __  ,                                                     (1) 

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209 

3204



where imatchedN _  is the number of examples whose 

classification is i and matched by that rule, matchedN  is the 

total number of examples that the rule matches; itrainingN _  is 

the number of training examples whose classification is i, 

trainingN  is the total number of training examples. 

    For example, if the distribution of the positive examples 
and negative examples in the training set is 42% and 58%, 
and among the examples of rule 1 matches positive / negative 
examples are half to half, then the consequent of rule 1 
should be positive because 0.5 > 0.42. Since the testing 
databases we use at this time don’t have a very uneven 
distribution on the classification of training examples, in our 
current implementation we didn’t specially consider the 
interestingness of rules but use this strategy to keep enough 
rules to match examples with minor classification. Our 
encoding method is not limited to two-category classification 
but applicable to multi target value problems. 

3.2 Fitness function 
It is very important to define a good fitness function that 
rewards the right kinds of individuals.  We try to consider 
affecting factors as complete as possible to improve the 
results of classification. Our fitness function is defined as 
following: 
Fitness = Error rate + Entropy measure + Rule consistency + 
Hole ratio                                                                        (2) 
    We will elaborate each part in the fitness function in the 
following. 
1) Error rate 
It is well known that accuracy is the most important and 
commonly used measure in the fitness function as the final 
goal of data mining is to get good prediction results. Since 
our objective function here is minimization, we use error rate 
to represent this information. It is calculated as: 
Error rate = percent of misclassified examples                  (3)                           
    If a rule matches a certain example, the classification it 
gives is its consequent part. If it doesn’t match, no 
classification is given. An individual consists of a set of 
rules, the final classification predicted by this rule set is 
based on the voting of those rules that match the example. 
The classifier gives all matching rules equal weight. For 
instance, in an individual (which has ten rules here), one rule 
doesn’t match, six rules give positive classification and three 
rules give negative classification on a training example, then 
the final conclusion given by this individual on that training 
example is positive. If a tie happens (i.e., four positive 
classifications and four negative classifications), the final 
conclusion will be the majority classification in the training 
examples. If none of the rules in the individual matches that 
example, the final conclusion will also be the majority 
classification in the training examples. The error rate 
measure of this individual is the percent of misclassified 
examples among all training examples. 
 
 

2) Entropy measure 
Entropy is a commonly used measure in information theory. 
Originally it is used to characterize the (im)purity of an 
arbitrary collection of examples. In our implementation 
entropy is used to measure the homogeneity of the examples 
that a rule matches. 
    Given a collection S, containing the examples that a 
certain rule R matches, let Pi be the proportion of examples 
in S belonging to class i, then the entropy Entropy(R) related 
to this rule is defined as: 

 



n

i

ii ppREntropy
1

2 ))(log()(                                      (4) 

where n is the number of target classifications. 
    While an individual consists of a number of rules, the 
entropy measure of an individual is calculated by averaging 
the entropy of each rule: 

R

N

i

i

N

REntropy

individualEntropy

R


 1

)(

)(                            (5) 

where NR is number of rules in the individual (in our current 
implementation it is 10). 
    The rationale of using entropy measure in fitness function 
is to prefer those rules that match less examples whose target 
values are different from rule’s consequent. High accuracy 
does not implicitly guarantee the entropy measure is good 
because the final classification conclusion of a certain 
training example is based on the comprehensive results of a 
number of rules. It is very possible that each rule in the 
individual has a bad entropy measure but the whole rule set 
still gives the correct classification. Keeping low entropy 
value of an individual will be helpful to get better predicting 
results for untrained examples. 
3) Rule consistency 
As stated in the above sections, the final predicted 
classification of a training example is the majority 
classification made by rules in an individual. Let’s consider 
the following classifications made by two individuals on an 
example: 
Individual a: six rules  +, four rules  -, final 
classification: + 
Individual b: nine rules  +, one rule  -, final 
classification: + 
    We will prefer the second individual since it is less 
ambiguous. To address this rule consistency issue, we add 
another measure in the fitness function. The calculation is 
similar to the entropy measure. Let Pcorrect be the proportion 
of rules in one individual whose consequent is same with the 
target value of the training example, then 

)1(log)1(

log)(

2

2

correctcorrect

correctcorrectyconsistenc

pp

ppindividualRule




             (6) 

    We should notice that this formula will give the same rule 
consistency value when pcorrect and (1-pcorrect) switch each 
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other. Therefore a penalty will be given when pcorrect is 
smaller than 0.5. In this case Ruleconsistency = 2 - Ruleconsistency. 
The above calculation is based on the predicting results for 
one training example. The complete measure of rule 
consistency of an individual should be averaged by the 
number of training examples. 
4) Hole ratio: 
The last element in the fitness function is the hole ratio. It is 
a measure of rule’s coverage on training examples. Coverage 
is not a problem for traditional inductive learning methods 
like decision trees, since the process of creating trees 
guarantees that all the training examples will be covered in 
the tree. However, this also brings a new problem that it may 
be sensitive to noise. GA approach does not guarantee that 
the generated rules will cover all the training examples. This 
allows flexibility and may be potentially useful for future 
prediction. In real implementation we still hope the coverage 
should reach a certain point. For instance, if a rule only 
matches one training example and its consequent is correct, 
the accuracy and entropy measure of this rule are both 
excellent but we do not prefer this rule because its coverage 
is too low. 
    In our fitness function the hole ratio equals to 1-coverage, 
in which the latter is calculated by the union of examples that 
are matched and also correctly predicted by the rules in an 
individual. Totally misclassified examples (not classified 
correctly by any rule in the individual) will not be included 
even though they are matched by some rules. The following 
is the formula to calculate the hole ratio for binary 
classification problem (positive, negative). 

S

NP

Hole i

i

i

i   

1                                              (7) 

where 
iP  stands for those examples whose target value is 

positive and classified as positive by at least one rule in the 

individual, 
iN  stands for those examples whose target value 

is negative and classified as negative by at least one rule in 
the individual. S  is the total number of training examples. 

3.3 Adaptive asymmetric mutation 
In our reproduction step, traditional bit inversion is used on 
mutation. However, we found many examples will not be 
matched if we keep number of 1’s and 0’s approximately 
equivalent in an individual (i.e., the inversion probability 
from 1-0 and 0-1 are both 50%). The learning process will 
become a majority guess if there are too many unmatched 
examples. Therefore, we put forward a strategy of adaptive 
asymmetric mutation in which the inversion probability from 
1-0 (0-1) is self-adaptive during the process of run. The 
asymmetric mutation biases the population toward 
generating rules with more coverage on training examples. 
The self-adaptation of inversion probability makes the 
optimal mutation parameter be automatically adjusted. 

    We presented an adaptive simplex genetic algorithm 
before (Yang, 2000) in which the percentage of simplex 
operator is self-adaptive during the process of run. Similar 
idea is adopted here that average of fitness is used as a 
feedback to adjust the inversion probability. The process of 
self-adaptation is described as following: 
    1) An initial inversion probability is set (e.g., 0.5 for 1-0). 
Use this probability on mutation to produce a new 
generation. Calculate the average fitness of this generation. 
    2) Randomly select the direction of changing this 
probability (increase, decrease). Modify the probability along 
that direction with a small amount (0.02 in our current 
implementation). Use the new probability to produce the next 
generation and calculate the average fitness of the new 
generation. 
    3) If the fitness is better (value is smaller), continue on this 
direction and the amount of change is: 
p = max{0.05, (1- fitnessnew / fitnessold) * 0.1}                (8) 
    If the fitness is worse (value is larger), reverse the 
direction and the amount of change is: 
p = max{0.05, (fitnessnew / fitnessold  - 1) * 0.05}            (9) 
    Use the new probability to produce the next generation 
and calculate the average fitness of the new generation. 
    Repeat step 3 until the program ends. 

4. RESULTS AND DISCUSSIONS 

We tested our approach on three real databases. We 
compared our approach with four other traditional data 
mining techniques. This section will present the testing 
results. 

4.1 The information of databases 
1) Credit database 
This database concerns credit card applications. All attribute 
names and values have been changed to meaningless 
symbols to protect confidentiality of the data. This database 
is interesting because there is a good mix of attributes ---- 
continuous, nominal with small numbers of values, and 
nominal with larger numbers of values. There are 15 
attributes plus one target attribute. Total number of instances 
is 690.  
2) Voting database 
This database saves 1984 United States Congressional 
Voting Records. The data set includes votes for each of the 
U.S. House of Representatives Congressmen on the 16 key 
votes identified by the CQA. The CQA lists nine different 
types of votes: voted for, paired for, and announced for 
(these three simplified to yea), voted against, paired against, 
and announced against (these three simplified to nay), voted 
present, voted present to avoid conflict of interest, and did 
not vote or otherwise make a position known (these three 
simplified to an unknown disposition). There are 16 
attributes plus one target attribute. Total number of instances 
is 435 (267 democrats, 168 republicans). 
3) Heart database 

Dipayan Kumar Ghosh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 5 (3) , 2014, 3203 - 3209 

3206



This database concerns heart disease diagnosis. The data was 
provided by V.A. Medical Center, Long Beach and 
Cleveland Clinic Foundation: Robert Detrano, M.D., Ph.D. 
There are 14 attributes plus one target attribute. Total number 
of instances is 303. 

4.2 The description of non-GA approaches 
We used four well-known methods from machine learning, 
namely Induction Decision Trees (ID3) (Quinlan, 1986), 
Decision Trees with Boosting (Quinlan, 1996), Neural 
Networks, and Naïve Bayes (Mitchell, 1997), to compare the 
performance of our improved GA. Appropriate state-of-the-
art techniques have been incorporated in most of the non-GA 
methods to improve their performance. The following is a 
description of the non-GA approaches we used for the 
performance comparison studies.   
1) Induction Decision Trees 
The construction of a decision tree is divided into two stages. 
First, creating an initial, large decision tree using a set of 
training set. Second, pruning the initial decision tree, if 
applicable, using a validation set. Given a noise-free training 
set, the first stage will generate a decision tree that can 
classify correctly all examples in the set. Except that the 
training set covers all instances in the domain, the initial 
decision tree generated will over fit the training data, which 
then reduce its performance in the test data. The second stage 
helps alleviate this problem by reducing the size of the tree. 
This process has an effect in generalizing the decision tree 
that hopefully could improve its performance in the test data. 
    During the construction of an initial decision tree, the 
selection of the best attribute is based on either the 
information gain (IG) or gain ratio (GR). A binary split is 
applied in nodes with continuous-valued attributes. The best 
cut-off value of a continuous-valued attribute is locally 
selected within each node in the tree based on the remaining 
training examples. The tree’s node expansion stops either 
when the remaining training set is homogeneous (e.g., all 
instances have the same target attribute values) or when no 
attribute remains for selection. The decision on a leaf 
resulting from the latter case is determined by selecting the 
majority of the target attribute value in the remaining training 
set.     
    Decision tree pruning is a process of replacing sub-trees 
with leaves to reduce the size of the decision tree while 
retaining and hopefully increasing the accuracy of tree's 
classification. To obtain the best result from the induction 
decision tree method, we varied the use of pruning algorithm 
to the initial decision tree. We considered using the 
following decision trees pruning algorithms: critical-value 
pruning (Mingers, 1987), minimum-error pruning (Niblett & 
Bratko, 1986), pessimistic pruning, cost-complexity pruning 
and reduced-error pruning (Quinlan, 1987),. 
2) Induction Decision Trees with Boosting  
Decision Tree with Boosting is a method that generates a 
sequence of decision trees from a single training set by re-
weighting and re-sampling the samples in the set (Quinlan, 

1996; Freund & Schapire, 1996). Initially, all samples in the 
training set are equally weighted so that their sum is one. 
Once a decision tree has been created, the samples in the 
training set are re-weighted in such a way that misclassified 
examples will get higher weights than the ones that are easier 
to classify. The new samples weights are then renormalized, 
and next decision tree is created using higher-weighted 
samples in the training set. In effect, this process enforces the 
more difficult samples to be learned more frequently by 
decision trees. The trees generated are then given weights in 
accordance with their performance in the training examples 
(e.g., their accuracy in correctly classifying the training data). 
Given a new instance, the new instance class is selected from 
the maximum weighted average of the predicted class over 
all decision trees.  
3) Neural Networks 
Inspired in part by biological learning systems, neural 
networks approach is built from a densely interconnected set 
of simple units.  Since this technique offers many design 
selections, we fixed some of them to the ones that had been 
well proven to be good or acceptable design choices. In 
particular, we use a network architecture with one hidden 
layer, the back-propagation learning algorithm (Rumelhart, 
Hinton & William, 1986), the delta-bar-delta adaptive 
learning rates (Jacobs, 1988), and the Nguyen-Widrow 
weight initialization (Nguyen & Widrow, 1990). Discrete-
valued attributes fed into the networks input layer is 
represented as 1-of-N encoding using bipolar values to 
denote the presence (e.g., value 1) and the absence (e.g., 
value –1) of an attribute value. Continuous-valued attribute is 
scaled into a real value in the range [–1, 1]. We varied the 
design choices for batch versus incremental learning, and 1-
of-N versus single network output encoding.  
4) Naive Bayes 
Naive Bayes classifier is a variant of the Bayesian learning 
that manipulates directly probabilities from observed data 
and uses these probabilities to make an optimal decision. 
This approach assumes that attributes are conditionally 
independent given a class. Based on this simplifying 
assumption, the probability of observing attributes’ 
conjunction is the product of the probabilities for the 
individual attributes. Given an instance with a set of 
attribute-value pairs, the Naive Bayes approach will choose a 
class that maximizes the conditional probability of the class 
given the conjunction of attributes values. Although in 
practice the independence assumption is not entirely correct, 
it does not necessarily degrade the system performance 
(Domingos & Pazzani, 1997).  
    We also assume that the values of continuous-valued 
attributes follow Gaussian distribution. Hence, once the 
mean and the standard deviation of these attributes are 
obtained from the training examples, the probability of the 
corresponding attributes can be calculated from the given 
attribute values. To avoid zero frequency count problem that 
can dampen the entire probabilities calculation, we use an m-
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estimate approach in calculating probabilities of discrete-
valued attributes (Mitchell, 1997).  

4.3 Comparison results 
For each database, k-fold cross-validation method is used for 
evaluation. In this method, a data set is divided equally into k 
disjoint subsets. k experiments are then performed using k 
different training-test set pairs. A training-test set pair used in 
each experiment is generated by using one of the k subsets as 
the test set, and using the remaining subsets as the training 
set. Given k disjoint subsets, for example, the first 
experiment takes the first subset for the test set, and uses the 
second subset through the kth subset for the training set. The 
second experiment uses subset 1 and subset 3 through subset 
k for the training set; and takes subset 2 for the test set, and 
so on. All results from a particular database are averaged 
along with its variance over k experiment runs.  
    Based on their size, the credit database and voting 
database are partitioned into 10 disjoint subsets, the heart 
database is partitioned into 5 subsets. Table 1, 2, 3 show the 
performance comparison results of different approaches on 
these three databases. For decision trees with and without 

boosting, we present only the best experimental results after 
varying the data splitting methods as well as the pruning 
algorithms described earlier. Similarly, results from neural 
networks approach are selected from the ones that provide 
the best performance after varying the use of different 
network output encoding and batch versus incremental 
learning methods. 
    In Table 1, the decision tree is generated using information 
gain for data splitting and minimum-error pruning. Decision 
trees with boosting generates 21 different decision trees, each 
is constructed by using gain ratio for data splitting and cost-
complexity pruning algorithm.  Batch learning and 1-of-N 
output encoding are used in neural networks. 
    In table 2, the best results from both decision trees with 
and without boosting are obtained from using information 
gain for data splitting and reduced-error pruning algorithm. 
Only three decision trees are needed in the decision trees 
with boosting. 
 
 

Table 1   The comparison results on the prediction accuracy and standard deviation (%) of credit database. 

 
Our GA 
approach 

Decision trees 
(IG, Min-Err) 

Decision trees with 
boosting 

(RG, Cost-Com, 21 
trees) 

Neural networks (1-of-
N, batch learning) 

Naive Bayes 

Run 1 90.77 87.69 89.23 89.23 66.15 
Run 2 89.23 84.62 86.15 86.15 78.46 
Run 3 89.23 89.23 90.77 90.77 84.62 
Run 4 92.31 90.77 90.77 89.23 81.54 
Run 5 86.15 81.54 81.54 84.62 75.38 
Run 6 89.23 87.69 87.69 87.69 80.00 
Run 7 84.62 81.54 84.62 84.62 73.85 
Run 8 87.69 86.15 87.69 86.15 83.08 
Run 9 90.77 86.15 89.23 87.69 76.92 
Run 10 86.76 88.24 91.18 86.76 75.00 
Average 88.68 86.36 87.89 87.29 77.50 

Standard deviation 2.37 3.06 3.08 2.03 5.36 
      

Table 2 The comparison results on the prediction accuracy and standard deviation (%) of voting database. 

 
Our GA 
approach 

Decision trees 
(IG, Red-Err) 

Decision trees with 
boosting (IG, Red-

Err,3 trees) 

Neural networks (1-
of-N, batch learning) 

Naive Bayes 

Run 1 95.35 95.35 95.35 93.02 93.02 
Run 2 97.67 93.02 97.67 97.67 90.70 
Run 3 97.67 97.67 97.67 97.67 93.02 
Run 4 95.35 95.35 97.67 97.67 88.37 
Run 5 95.35 95.35 95.35 93.02 88.37 
Run 6 97.67 97.67 97.67 97.67 88.37 
Run 7 95.35 93.02 93.02 95.35 93.02 
Run 8 97.67 95.35 95.35 95.35 90.70 
Run 9 100.00 100.00 97.67 95.35 90.70 
Run 10 95.83 93.75 97.92 95.03 85.42 
Average 96.79 95.65 96.54 95.86 90.17 

Standard deviation 1.59 2.23 1.67 1.46 2.53 
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Table 3  The comparison results on the prediction accuracy and standard deviation (%) of heart database. 

 
Our GA 
approach 

Decision trees 
(IG, Red-Err) 

Decision trees with 
boosting 

(IG, Red-Err, 
21 trees) 

Neural networks 
(1-of-N,  incr 

learning) 
Naive Bayes 

Run 1 89.83 81.36 88.14 81.36 89.83 
Run 2 83.05 77.97 84.75 84.75 79.66 
Run 3 81.36 76.27 76.27 74.58 83.05 
Run 4 88.14 76.27 83.05 89.83 83.05 
Run 5 83.33 66.67 71.67 81.67 80.00 

Average 85.14 75.71 80.77 82.44 83.12 
Standard deviation 3.64 5.46 5.54 5.66 4.08 

      
    In table 3, the best results from neural networks are 
obtained from applying incremental learning and 1-of-N 
network output encoding. 
    From the above results we can see that our GA approach 
outperformed other approaches on both the average 
prediction accuracy and the standard deviation. The 
advantage of our GA approach becomes more obvious on 
heart database, which is most difficult to learn among the 
three. During the process of running, we also found that the 
training accuracy and testing accuracy of GA approach are 
basically in the same level, while the training accuracy is 
often much higher than testing accuracy for other 
approaches. This proves that GA approach is less sensitive to 
noise and might be more effective for future prediction. 

5. CONCLUSIONS AND FUTURE WORK 

In this paper we put forward a genetic algorithm approach for 
classification problem. An individual in a population is a 
complete solution candidate that consists of a fixed number 
of rules. Rule consequent is not explicitly encoded in the 
string but determined by the match situation on training 
examples of the rule. To consider the performance affecting 
factors as complete as possible, four elements are included in 
the fitness function which are predicting error rate, entropy 
measure, rule consistency and hole ratio, respectively. 
Adaptive asymmetric mutation and two-point crossover are 
adopted in reproduction step. The inversion probability of 1-
0 (0-1) in mutation is self-adaptive by the feedback of 
average fitness during the run. The generated classifier after 
evolution is voting-based. Rules are not disjoint but allowed 
to overlap. Classifier gives all rules the equal weight for their 
votes. We tested our algorithm on three real databases and 
compared the results with four other traditional data mining 
approaches. It is shown that our approach outperformed other 
approaches on both prediction accuracy and the standard 
deviation. 

    Further testing on various databases is in progress to test 
the robustness of our algorithm. Splitting continuous 
attribute into multiple intervals rather than just two intervals 
based on a single threshold is also considered to improve the 
performance. 
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